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Abstract— In this paper, Spatial Access Methods,
like R-Tree and k-d Tree, for indexing data, are used to
speed up the training process and performance of data
analysis methods which learning algorithms are kind of
competitive learning. Often, the search for the winning
neuron is performed sequentially, which leads to a large
number of operations. Instead of using the common
sequential determination of the winning neuron, which
has a computational complexity of O(N) (where N is
the number of candidate units to be the winner), the
approach proposed here allows to find the winning neu-
ron in, approximately, log N steps. Results obtained
by incorporating k-d-tree, R-Tree into Self-Organizing
Maps are presented and compared with their sequen-
tial counterpart implementation of SOM. The methods
of SOM family used are: k-means, Kohonen network
and GNG network. Several database has been used
for demonstrating that a dramatic speed up can be
achieved, what is very significant when large-scale and
high dimensional databases are being considered.

1 Introduction

Many artificial neural network models adopt the com-
petitive learning for updating their weights. This kind
of learning algorithm finds to the winning among sev-
eral units, in a sequential way, which leads to a large
number of operations.

Self-Organizing Maps (SOMs) are example of such
networks. They are methods for data analysis which
combine the grouping of data with an embedding in
a low dimensional space for the purpose of visualiza-
tion. SOMs include standard clustering algorithms (k-
Means) as the limiting case that - for every data point
only one - weight vector is updated at one iteration.
Let us now consider the case of metric data, i.e. the
case that every data point is characterized by a fea-
ture vector. Assignment of data points to clusters is
performed by (i) calculating the distance between the
data point and the weight vector of the units, and (ii)
by assigning the data point to the unit whose weight
vector is closest. In general, distance calculations have

to be performed for every data point and for every
iteration during the learning process, and can be com-
putationally expensive in particular if the dimension of
data space is high. The involved computational cost
has a computational complexity of O(N) and this can
imply to a high computation time when these methods
are applied to large-scale databases.

On the other hand, Spatial Access Methods
(SAM) [11], which are used for information retrieval
in large databases [1], perform a hierarchical partition-
ing of input space and arrange the partitions in a tree
structure. Then this tree can also be used as a search
tree for to retrieve objects, like the weight vector of a
unit in SOM. If the tree is constructed in an efficient
way, the number of visited nodes could be O(logm(N))
where N is the number of vectors inserted in the neural
network and m is the number of entries per node.

In [7], it was introduced a family of dual kdtree
traversal algorithms for accelerating a wide class of
statistical methods that are naively quadratic in the
number of datapoints. However, it was used only the
k-d-tree structure [2], which is widely known as an inef-
ficient SAM due to the unbalanced tree generated and
it was not address potential speedups during learning
and adaptation.

It is known that one standard method of spatial in-
dexing is the R-Tree [8], which is frequently considered
as the main reference method for new SAMs. R-Trees
provide good results if the dimension of the feature
space is lower than approximately 20. If the dimen-
sion is larger than this, other techniques like OMNI [12]
should be preferred. The reader can see [11, 3] for more
references about these and other access methods.

Recently, a SAM-SOM family has been proposed by
us [4] in which R-Tree has been used to reduce dra-
matically the number of comparisons of each of the
N points in a dataset with each other point. It has
been proposed an improved search procedure applied
to SOM, based on R-Trees, which reduces the com-
putational complexity for log(N) instead of O(N) in
searching for the winning neuron.

In the present paper, this idea has been extended



and a comparative analysis about the performance of
SOM (using R-Tree and k-d Tree for choosing the win-
ning neuron) and the traditional SOM implementation
is presented using several databases. Three algorithms
of SOM family, including: K-Means Clustering, Ko-
honen Map and Growing Neural Gas are addressed in
this paper. Further, it will be shown how to incorpo-
rate SAM into SOM for both batch and on-line learn-
ing methods aiming to speed up the training process
for neural networks with competitive learning. It is
worth to note that SOMs serve only as a benchmark
example. The approach proposed can be applied to a
variety of algorithms which involve distance computa-
tions among data objects.

This paper is organized as follows. In section 2, it
will be briefly summarized the previous work. In the
section 3, it will be shown how the incorporation of
SAM to SOM is realized for both batch-learning and
on-line learning. The benchmark results are presented
in section 4. Finally, in section 5, conclusions and fu-
ture work are presented.

2 Related works

Let us consider a data set, where the data objects i

are described by feature vectors ~xi ∈ R
n. The data

objects should be represented by a SOM network with
M units (or neurons) p, with weight vectors ~wp. Given
a set of training data, the weight vectors can be deter-
mined using either batch [9] or on-line learning [10].
The batch learning algorithm for the standard SOM
involves an iteration of the following two steps in its
inner loop:

p( ~xk) = argminq|~xk − ~wq|,∀k, assignment step (1)

∆~wq = εhqp( ~xk)(~xk − ~wq),∀k, q adaptation step (2)

where ε is the learning constant and hqp is the neigh-
borhood function. In on-line learning, one data point
is processed at a time, and we obtain:

p( ~xk) = argminq|~xk − ~wq|, assignment step (3)

∆~wq = εhqp( ~xk)(~xk − ~wq), ∀q adaptation step (4)

If hqp = δqp, i.e. if only one unit is being updated
for each data point, eqs. (1)-(4) reduce to the batch
and the on-line version of the k-Means clustering algo-
rithm [9, 10]. If a new data point ~xl is presented after
learning, the data point is assigned to the unit p(~xl)
with the weight vector ~wp which is closest, i.e.

p( ~xk) = argminq|~xl − ~wq|. (5)

For simplicity, the Euclidean distances has been
adopted, but all results presented in section 4 also hold
if other distance measures are used as well as if eqs.
(1)-(4) are changed accordingly to different neighbor-
hoods.

The Growing Neural Gas (GNG) [6] is a variant of
SOM, for which nodes are added during the learning
process and for which the neighborhood function is
adaptive. It is an incremental clustering method. Be-
cause it has been also used for testing the proposed
approach.

On the other hand, Spatial Access Methods-SAM
are methods of indexing data objects, which are de-
scribed by feature vectors like (x1, x2, ..., xn). There
are many methods to index multi-dimensional objects.
Some of the most classics SAM are k-d Tree [2] and
R-Tree [8] which are briefly explained to follow.

• k-d Tree [2]: this SAM is used for n-dimensional
vectors (x1, x2, ..., xn). It creates a binary tree us-
ing the first co-ordinate, x1, to decide its position
(left or right) at the first level, the co-ordinate x2

will be used for the 2nd level. When all the co-
ordinates have been used, x1 is used again and so
on. In the Figures 1(a) and 1(b), it is shown an
example of this structure for 2 dimensional data
(2-d Tree).
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Figure 1: 2-d Tree.

• R-Tree [8]: This is the first non point-based
SAM. It could be seen as a generalization of B-
Trees for multidimensional data indexing. In this
tree the information is in the leaves. Each up-
per level has the information about the Minimum
Bounding Rectangle (MBR) necessary to contains
all the child nodes.
Figures 2 and 3 illustrate, how R-Trees organize
the spatial data. Each node, except the leaves,
contains information about the Minimum Bound-
ing Rectangle (MBR) that contains all its child
nodes. In Figure 2, for example, we can see that
R17, R18 and R19 are contained in R7. Con-
sequently, those three objects are represented as
child nodes of the parent node R7 in the tree (Fig-
ure 3). If we insert a new element in this tree
(Figure 3), the search algorithm begins on the top
of the tree and inspects either R1 or R2 according
with the intersection between the new object and
the existing rectangles. If the new object is not
contained by one existing rectangles, the solution
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Figure 2: Minimum bounding regions represented by
a R-Tree
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is to increase the borders of one of them. The rect-
angle which is selected to expand its borders is the
one for which the added area is minimal. As it can
be seen in Fig. 3, each page can contain a maxi-
mum number of nodes (three in this case) which
is an initial parameter to be fixed before the tree
is build. If we insert a new object which should go
under R7 the result is an overflow. The solution
is to split this node in two new nodes containing 2
objects each one. The MBR represented by R7 is
removed and two new MBR are inserted instead.

3 Incorporating SAM into SOM

In order to incorporate k-d Tree or R-Tree or any other
access methods to SOMs, it is necessary to identify
each leaf of the tree with one unit (cluster) of the com-
petitive network. In [4], an algorithm has been pro-
posed for incorporating R-Tree into Growing Neural
Gas. This algorithm establishes a correspondence be-
tween each neuron in GNG with a leaf in R-Tree. The
nearest neighbor is determined by searching into R-
Tree. As explained in [8], the height of a R-Tree with
m entries per node and N vectors inserted is, at most,
dlogm(N)e − 1. For using k-d Tree or any other SAM,
the principle is the same, that is, the nearest neigh-
bor is determined by searching into the corresponding
SAM. The only difference will be the computational

cost related to internal specific algorithm to retrieve
the information.

During the learning process, however, weight vec-
tors are constantly modified and it is necessary to re-
arrange objects into the data structure. In the case
of k-d Trees, the main drawback is that, this access
method does not generate a balanced tree which in-
creases considerably the time for information retrieval.

The incorporation of SAM into SOM can be realized
in the following way. For batch-learning, where all
weight vectors are changed simultaneously, the SAM
being used should be built after every iteration. For
on-line learning, where only a few weight vectors are
changed at a time, the corresponding leaves of the SAM
should be updated.

In order to find the nearest neighbor for a new pat-
tern presented to neural network, it can be used either
a conventional algorithm for k Nearest Neighbor [13]
or a Range Query with an initial radius and increase it
gradually based on any previous knowledge about the
dataset. The latter technique is that one used in all
our experiments.

4 Experimental Results

In this section, the performance of the proposed tech-
nique is verified through several experiments realized.
The results has been obtained through the follow-
ing techniques: k-Means clustering (batch and on-line
learning), standard Kohonen network, and the GNG
network. For the two latest techniques we have used
on-line learning.

All algorithms, including k-d Tree and R-Tree , were
implemented using Microsoft Visual C++ 6.0 on a PC
1 GHz, 256 Mb RAM, running Windows XP. The num-
ber of distance calculations was used as a performance
measure to compare R-Tree indexing with the sequen-
tial search for the winning unit.

The methods were applied to the four datasets:
Abalone: This dataset is composed by 4177

vectors 8-d extracted from abalon’s physical mea-
suremente. The file was obtained from UCI-Irvine

repository of machine learning databases and

domain theories1

Letters: This dataset is composed by 20986 17-d
vectors which describe the shape of handwritten
letters. The file was obtained from UCI-Irvine

repository of machine learning databases and

domain theories2

Faces: This dataset is composed by 11900 16-d fea-
ture vectors which describe the properties of faces.
This dataset was obtained from from the Informedia
Project at Carnegie Mellon University.

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

abalone/.
2ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

letter-recognition/.



Images: This dataset is composed by 20000 1215-
dimensional feature vectors which describe the prop-
erties of images. The data was preprocessed using
the FastMap algorithm [5] in order to obtain 20-
dimensional feature vectors. This dataset was obtained
from from the Informedia Project at Carnegie Mellon
University.

In all tests realized, it has not been used k-d Trees,
for online algorithms, because this structure has seri-
ous restrictions to move and remove elements. When
an online algorithm is being executed, it is necessary
to move elements all the time, and when an element,
which is not a leaf, is moved using k-d Trees, it could
jump from a branch to another. When this happens,
the element should be removed and inserted again in
its new branch. The problem arises by the removal
process because it can force to rebuild the whole tree.
This situation is quite common during online training
processes. This is the main reason by which k-d Trees
has been used only for batch processes. More informa-
tion about this problem could be found in [2, 11].

In Fig. 4, 5 and 6 are presented the results ob-
tained by using k-means in Abalone, Faces and Letters
datasets, respectively.

The x-axis represents the number of prototypes used
during the simulation and y-axis represents the num-
ber of distance calculations required to find the near-
est neighbor unit using k-Means algorithm. As it can
be seen in these figures, using the on-line version, the
number of distance calculations required is always less
than using the batch considering the same dataset. It
is due to the fact that, in on-line version, the weights
are updated after each pattern.

In Figure 6(b), it is noted a better performance for
sequential approach during the first epoch. This re-
sult is probably due to the proposed algorithm to find
the k-nearest neighbors be based on range queries with
an estimated initial radius. At the beginning of the
process, all the units are chosen randomly and it is
necessary to expand the initial radius more than the
normal. However, only one epoch is necessary in or-
der to improve this result. The same problem does not
appear with on-line k-Means algorithm. The probably
reason is that the prototypes are constantly modified
for each pattern. As it can be seen in the previous
figures, there is a big difference between the sequential
approach and the k-Means algorithm using R-Tree. R-
Tree has a better performance than k-d tree because
it creates a tree balanced. It does not happen for k-d
Tree algorithm which can create a degenerated binary
tree similar to a linked list. This unbalanced tree has
consequences over information retrieval because it will
be necessary to inspect several branches. Even con-
sidering drawbacks presented by k-d trees, both data
structures, k-d trees and R-Tree, present better per-
formance than sequential implementation considering
batch learning.
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Figure 4: Number of distance calculations as functions
of the number of prototypes using k-Means with the
Abalone dataset.

For all these figures, it is important to note that,
after 90 and 100, in the x-axis, the next represented
points correspond to 200 and 300 clusters.

In Figure 7 are presented results obtained consid-
ering a Kohonen network. It is shown the number
of distance calculations required during the training
of a SOM for both the sequential implementation and
the implementation SOM-RTree (that is using R-Tree).
It is important to pay attention to the following fact:
the SOM network size used in this case is small (only
10x10 units) but the difference in terms of performance
between the SOM sequential implementation and the
SOM-RTree implementation is big. For large databases
the number of units necessary will be more much more
than 10x10 units.

In contrast to the results presented by Kohonen net-
work, the results using GNG (Figure 8) are presented
by a curve because the number unit is not constant,
since this neural network is a constructive network.
As it can be seen, in Figure 8(a) both results are the
same until GNG gets an architecture constituted by 10



500000

1000000

1500000

2000000

2500000

3000000

3500000

10 20 30 40 50 60 70 80 90 100 200 300

D
is

ta
nc

e 
ca

lc
ul

at
io

ns

Number of clusters

Sequential
After 1 epoch using RTree

After 10 epochs using RTree

(a) on-line

500000

1000000

1500000

2000000

2500000

3000000

3500000

10 20 30 40 50 60 70 80 90 100 200 300

D
is

ta
nc

e 
ca

lc
ul

at
io

ns

Number of clusters

Sequential
After 1 epoch using kd Tree

After 10 epochs using kd Tree
After 1 epoch using RTree

After 10 epochs using RTree

(b) batch

Figure 5: Number of distance calculations as function
of the number of prototypes using k-Means with the
Faces dataset.

units. It is because the GNG is not using the R-Tree
before this point but sequential approach (the number
10 was chosen considering that, when the R-Tree is
too small, it will be necessary to inspect all the pages,
probably less than three at that instant, and it is more
expensive to use the R-Tree instead of the sequential
approach). The parameters used in this experiment
are: λ = 600, εb = 0.05, εn = 0.0006, α = 0.5,
β = 0.0005, and amax = 100.

In all these models, k-Means, Kohonen SOM and
GNG with the proposed approach, it is only necessary
to find one nearest neighbor. This is due to the fact
that, in Kohonen and GNG, the neighborhood to be
updated is determined by connections, and in the case
of k-Means, there is no connections and we only update
one unit. The same technique could be applied to find
more nearest neighbors.
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Figure 6: Number of distance calculations as function
of the number of prototypes using k-Means with Let-
ters dataset.
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Figure 7: Results obtained by using a SOM Map, on-
line, with Images dataset.

5 Conclusions and Future

Works

In this paper, it was showed how Spatial Access Meth-
ods can be used to improve the performance of algo-
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Figure 8: Growing Neural Gas using Images dataset.

rithms which involve comparisons of each of the N

points in a dataset with each other point, such as,
algorithms of SOM family. Comparative results ob-
tained through the incorporation of R-Trees and k-
d Trees into three algorithms of the SOM-family (k-
Means clustering, standard SOMs and Growing Neu-
ral Gas networks) were presented. The results obtained
demonstrate that a speed up of a factor of ten or more,
in terms of number of distance computation, can be
achieved, what is very significant when large-scale and
high dimensional databases are being considered. As
a future, we intend to apply more sophisticated SAM
to improve the obtained results. By the way, we can
also improve the performance obtained by SAM trying
to incorporate intelligent techniques to reduce progres-
sively the number of distance calculations involved in
the information retrieval process.
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