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Abstract

This paper presents the hybridization of the Genetic Algorithm (GA) by using ideas enclosed in exact techniques,
like the Branch and Bound (B&B), Minimal Spanning Tree and Backtracking Algorithms. It also has been used the
Divide and Conquer principle. Two crossovers operators were proposed to propagate the good schema. These
operators together with mutation and one method to generate the initial population are based on the algorithms
mentioned above.

This Hybrid GA was applied to the well-known combinatorial optimization problem Traveling Salesman Problem
(TSP). In almost all cases, the optimal solution was found in few generations with quite a few individuals.

The Hybrid GA was implemented in software by using Visual C++ 6.0 together with VTK library (tool for scientific
visualization). VTK was used to build a visual environment which allows to see how is working the Hybrid GA.

1 Introduction

Genetic Algorithms (GAs) have been used successfully in optimization problems. However, this technique doesn’t
have a good performance as much as another techniques oriented to particular problems, so, a way to save this
problem is by the combination of several techniques. There has been proposed one method to generate the initial
population, two crossover operators and one mutation operator. The method to generate the initial population is
based on the Minimal Spanning Tree philosophy. First crossover operator is based on the Backtracking, and B&B
algorithms; the second, on the Minimal Spanning Tree idea; and mutation, on the Minimal Spanning Tree idea, and
the Divide and Conquer principle. Both crossover operators allow propagate good schema. Selection operator is
based on roulette wheel.

2 Literature Overview

2.1 Genetics Algorithms

GAs are search algorithms based on the mechanics of natural selection and natural genetics [1]. A GA works over a
population. Each individual of the population represents a solution to the problem that we want to solve. Each
individual should be represented as a bit string (0’s and 1°s). This string is called chromosome. Fitness is a value
that represents how good is a solution. The function fitness is the function we want to optimize and it allows
calculating the fitness for each individual. The best solutions will have a high fitness, so that they will have a higher
probability to survive than bad individuals. A simple GA is composed by 3 operators: reproduction, crossover and
mutation. The reproduction operator is an artificial version of selection natural: the fittest individuals will have the
highest probability to survive. This operator may be implemented in algorithm form in a several ways. One of them
is the roulette wheel [1]. Crossover consists in the information exchange between 2 individuals to create offspring.
Mutation consists in the modification of the encoded information in the chromosome. Both, crossover and mutation
operators, are driven by rates that indicate how often this operators are applied.

2.2 The Traveling Salesman Problem (TSP)

A salesman is required to visit each of n given cities once and only once, starting from any city and returning to the
original place of departure. What tour should he choose in order to minimize his total travel distance? The distances
between any pair of cities are assumed to be known by the salesman.



The Traveling Salesman Problem is one of the most widely studied problems in combinatorial optimization [9]. The
problem is easy to state, but hard to solve. Mathematically, the problem may be stated as follows:

Given a ‘cost matrix’ C = (c;), where c;; represents the cost of going from city i to city j, (i, j = 1,..., n), find a
permutation (iy, iy, i3, ..., 1) of the integers from 1 through n that minimizes the quantity Ciji, + Ciy i3+ ... + Ciyi;.

At first look it seems easy to solve, but a deeper analysis reveals the search space is a permutations set of n cities, so
that, its size is n/. The number of possible solutions to the symmetric TSP is (n-1)!/ 2.

2.3 Hybridization

When problem-specific information exists, it may be advantageous to consider a GA Hybrid. GAs may be crossed
with various problem-specific search techniques to form a hybrid that exploits the global perspective of the GA and
the convergence of the problem-specific technique [1]. GAs have a lower performance than other techniques
oriented to a specific problem. To save this inconvenient is recommended to apply the tactic of the Aybridization,
where other techniques are incorporated ([2], [3] and [4]).

2.4 Branch and Bound Algorithm (B&B)

In some problems, it is possible to reduce the search by excluding parts of the search space which cannot give better
than the current best known solution. This is the idea behind branch and bound. It is usually used for finding the
global optimum. It is only applicable to problems with a sufficiently well defined structure. Because it finds the
global optimum it has an exponential time complexity on NP-hard problem and is thus feasible only for “small
instances”. In some cases B&B can be used in conjunction with other heuristic search mechanisms which provide a
strong initial bound [5].

2.5 Minimal Spanning Tree (MST)

You desire to create a path net to connect a number of towns. Due to budget limitations, the total distance of paths to
build must be the least that allows the direct or indirect connection of traffic between different towns.

The algorithm needs to start with any node and to connect it with the nearest node. These two nodes forms a
connected set C and the others nodes forms the unconnected set C. Then, a node is chosen from the unconnected set,
which is the nearest (with the shortest branch length) to any node from connected set. The chosen node is eliminated
from C and it is joined to C. This process repeats until the unconnected set is empty [6].

2.6 Backtracking

It is a method of solving combinatorial problems by means of an algorithm which is allowed to run forward until a
dead end is reached, at which point previous steps are retraced and the algorithm is allowed to run forward again.
Backtracking can greatly reduce the amount of work in an exhaustive search [7].

2.7 Divide and Conquer Principle

Maybe the most important technique applied to design efficient algorithms is the strategy called Divide and
Conquer, which consists in the decomposition of a problem of size n in smaller problems, so that with the solution
of every problem is possible to build easily one solution to the whole problem [8].

2.8 Genetic Algorithms to the TSP

Many operators have been proposed for the TSP. Some of them are: Partially Matched Crossover (PMX) [1], Edge
Recombination Crossover (ERX) [10], Distance Preserving Crossover (DPX) [11], Edge Assembly Crossover
(EAX) [12]. It is possible to find a comparison between different operators in [13].

These algorithms have been tested with several TSP instances. Some of the them with instances up hundreds of
cities from the TSPLIB[14]. One fact that was found in many algorithms is that they use too many individuals and
large number of generations is required in order to find a good or optimal solution. The problem with this is that we
required more memory. In [15] a Hybrid GA with B&B Technique was proposed in order to get a better
performance. It was used to solve instances up to 100 cities.

Most works on GAs aim to mix this technique with another heuristics. On the other side in this paper we will see
how it is possible to mix different some exacts techniques with GAs.



3 Hybrid Genetic Algorithm

3.1 Encoding the solutions

To encode a valid tour it was used the path representation [1], e.g.: the tour 5-1-6-4-2-3 is represented by the vector
(5,1,6,4,2,3). Where each number represents a node or city and the sequence, the order in which must be traveled
over.

3.2 Initial population

To initialize the population the Minimal Spanning Tree idea was used. The method implemented differs from the
traditional algorithm in one thing: when we add a new node to the connected set we just consider a node which is the
nearest to the initial or end node of the connected set. In Fig. 1.a we have to connect 7 nodes. We start with any
node, for example node 2. Now we choose the nearest node to 2. It is node 3. These two nodes form the connected
set. The remaining nodes form the unconnected set. Now we look for the nearest node to the extreme nodes of the
partial tour, in this case nodes 2 and 3. Node 4 is the nearest to node 3. We add it to connected set. In Fig. 1.c we can
see new partial tour, where the extreme nodes are 2 and 4. We continue until all nodes are in the connected set.
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Fig. 1. Method to create an individual

Finally, when we have connected all nodes, we link the first with the last node of the partial tour. We can appreciate
this in Fig. 1.h. Although this is not the best solution, it is much better than a solution formed randomly by a
permutation. From now on, we will refer to this method as Population Generator based on MST idea (PGMST).

3.3 Hybrid GA Operators

3.3.1 Selection Operator
Consider a population with 5 individuals. We choose the shortest tour length. Then, we divide it by each tour length
and the result will be the fitness of an individual. This is shown in Table 1.

Table 1. Selection Method based on Roulette Wheel

Individual (tour)| Length Fitness 2. Fitness
1 50 50/50 = 1.00 1.00 o 234
2 80 50/80 =0.63 1.63 : ' '
3 90 50/90 =0.55 2.18 ! 2 | 3 | 4 |5 |
4 70 50/70 =0.71 2.89
5 100 50/100 = 0.50 3.39 Fig. 2. Probabilities for each individual

In Fig. 2 probabilities for each individual from Table 1 are shown graphically. The first individual is the best and
that’s why it has the highest fitness, so it will have the highest probability to survive when parents are selected
randomly.



3.3.2 Crossover Operators

There have been implemented two kinds of crossover operators. Both have in common the use idea of the schemata
theory: Good schema will survive in the next generations. Therefore, having this idea in mind we choose 2 parents
and detect what parts of the string are common. Once we have all common segments in both parents, we eliminate
them together with their intermediate nodes. Then, we apply to the remaining nodes the method PGMST.

Figures 3.a and 3.b shows 2 possible solutions to a TSP instance of size 7. This first step is to identify the common
segments in both parents. In this case there is only one common segment which is 1-2-3-4, see figures 3.c and 3.d.
Now we delete the common segment’s edges and fusion the remaining edges from both parents into one graph. This
can be appreciated in Fig. 3.e. It also has been added a new edge which links the first node with the last node from
the common segment. Now we look for a new tour considering only the parent’s edges. For this purpose,
Backtracking, and B&B Algorithms have been used. We can see a new tour in Fig. 3.f (thick lines). Finally, we add
the common segment, which was deleted, to the new tour, as we can see in Fig. 3.g
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Fig. 3. First Crossover Operator

The second crossover operator also detects the common segments in both parents, but the child will not be created
considering only parent’s edges. Suppose we want to apply this operator to the parents of the last example. There is
only one common segment which is formed by nodes 1, 2, 3 and 4. We delete the intermediate nodes of the segment
which are nodes 2 and 3. Now we link node 1 to node 4 and delete all parent’s edges. It is shown in Fig. 4, where
nodes 2 and 3 appear in gray.
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Fig. 4. Second Crossover Operator

Now we apply the method PGMST to the remaining nodes. These nodes are 1, 4, 5, 6 and 7. When a tour is found,
the edge that links the node 1 and 4 is replaced by the common segment.

In both operators is important to realize that they always look for common segments. Then, they are replaced by an
edge which links the first to the last node of each segment. These segments will always be present in the child.
Therefore, when 2 good parents are crossed their child will inherit the “good schema”.

The first operator only looks for new children considering the parent’s edges. However, there is the possibility to
add just one new edge. The second considers the possibility to add many new edges. It provides diversity in order to
do a global search.

3.3.3 Mutation Operator

What this operator makes is to reorder the chromosome structure. This operator takes a chromosome, divide it into
fixed length segments and then reorders each segment in order to find a segment which represents a smaller path
length. In Fig. 5.a we have an individual, who has been selected for the process of mutation. We choose an integer



number randomly. Suppose 7 is the selected number. Now we divide the chromosome into parts of size 7. The
chromosome only have 11 nodes, so that, we only have one segment of size 7. We choose any node as initial node.
For example, node 4. Now we choose our segment of size 7. It may be 4-3-2-1-5-6-10 or 4-7-9-8-11-10-6. Let’s take
the last segment. This is the segment formed by the edges a, b, c, d, e and f. Now we delete the remaining nodes and
all edges, see Fig. 5.c. Then, we push in a vector the initial and last node of the segment they are nodes 4 and 6,
respectively. The next step is to apply the method PGMST. We choose the nearest node to 4 or 6 and add it to the
vector. The nearest is node 11, which is close to node 6. We add it; this is shown in Fig. 5.d. Now we search for the
nearest node to node 4 or node 11. The nearest is 7. We add it, see Fig. 5.e. We continue this process. In Fig. 5.f, we
can see how the vector is changing until all nodes have been connected. The tour completed is shown in Fig. 5.g, but
this not the entire chromosome. In Fig. 5.h, we can see that chromosome have been completed. The segment that
was deleted at the beginning of the process has replaced the edge that linked node 4 and 6.

From now on, we will refer to the first crossover operator as B&BBX (Branch & Bound-Backtracking Crossover)
and to the second as MSTX (Minimal Spanning Tree Crossover).
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Fig. 5. Mutation Process

4 Results

Trials realized so far include several TSP instances obtained from [10]. Before explaining results, it is important to
mention that experiments have not finished yet. Since there are several parameters that drive the operators
performance, more trials are required in order to realize a detailed comparison with another genetic algorithms.
However, it is possible to mention some important results.

All trials have been carried out on simple PC Pentium 100MHz with 40MB RAM. Hybrid GA has been tested with
instances up to 225 cities.

Applying only B&BBX it was possible to find the optimal solution or with an error rate of 0.3% for instances up to
105 cities. Performance decreased for larger problems because of backtracking. With MSTX optimal solutions or
with an error rate of 0.4% were found.

Elitism was an important factor. The best individual of a generation was copied to the next generation. Besides, new
individuals were inserted into population periodically in order to provide diversity. Working both crossover
operators at the same time made possible to get a better performance. B&BBX was applied with a probability 0.4
and MSTX, with 0.6. Mutation was always applied to best individual of each generation. The error rate was 0.17%
in the worst case and quite a few individuals were used in each trial obtaining good solutions between 6 and 30
generations for instances up to 105 cities.

In latest trials, only MSTX was used and mutation operator was applied to every individual with probability 0.4, see
Table 2. It was noticed that quality of solutions improved because mutation operator was applied to every individual
in the population.



Table 2. Some results applying only MSTX and mutation to every individual

Instance | Number of | Population | Number of | Crossover | Hybrid GA | Best Known | Error (%)
cities size generations | operator Solution

TSP225 225 6 25 MSTX 3935.35 3916 0.49

KroA100 100 15 20 MSTX 21285.44 21282 0.016

Trying trials with different values for each parameter can make possible to get better results. Besides, it’s possible to
make fits to the application in order to improve the performance. Additionally, let’s remember that Hybrid GA run
on a simple Pentium 100 MHz, 40MB RAM. Therefore, we can expect better results when we try it on a powerful
machine, where Hybrid GA will be tested with larger instances.

To propagate good schema, by copying the common segments from parents to a child, worked very well.
Experiments showed that in most crossovers (88% of the first three generations), children were better than their
parents.

Another authors have tested their algorithms with hundreds of cities. Combining GAs with another heuristics has
been most successful approaches. However, in this paper we have shown that combining GAs with exact techniques
can give good results as much as another algorithms. Still we can not say how good is the Hybrid GA presented
here, because more trials with larger instances are required. However, at this moment we can say this Hybrid GA
can give good solutions as much as most successful genetic algorithms for instances up to 225 cities. A good thing
about this Hybrid GA is that an optimal or good solution is found in few generations with quite a few individuals.
About the application’s interface, it was possible to implement a visual environment which shows how are working
the different techniques that were mixed. It also allowed detecting some problems that were not detected before.

5 Conclusions

It is possible to fusion evolutionary and exact techniques within a cooperative framework in order to get a better
performance. This kind of approach can give good results as others approaches ( GAs with others heuristics).

To apply the B&B technique with adequate criteria to guide the search could be beneficial. It’s important to consider
advantages and drawbacks of the techniques to use, so that, it’s possible to detect all variables which must be
managed adequately. It is very important to control the search when exact techniques are being used, because it may
reduce the computational effort.

The idea to propagate good schema, by copying the common segments from parents to a child, worked as it was
expected. Therefore, in this way it is possible to follow researching new operators that try to propagate
“intentionally” good schema. In fact, this is one of the main contributions of this work.

To provide a visual environment, which shows how a Hybrid GA is working, can be too much useful. This can
allow detecting problems in specific situations that are not appreciated when we just see the best solution of a
generation.

Applying an adequate elitist strategy is very important, because this can avoid falling in optimal local solutions. It’s
not enough to insert new individuals when rate of identical individuals is high. A good tactic could be to insert new
individuals periodically in order to provide diversity to the population. This is good when quite a few individuals are
used in trials.
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