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Abstract. Proximity graphs have been widely used in the area of computa-
tional geometry; through a vicinity concept these graphs establish relations
of similarity between elements of a set. In this paper we propose the use of
Relative Neighborhood Graph (RNG) in metric spaces in order to efficiently
answer similarity queries. Additionally we introduce a new algorithm for
range queries and nearest neighbor queries making use of the spatial approx-
imation in graphs. Experiments show that our proposal has a comparable
performance in terms of Number of Distance Calculations (NDC) and time.

1. Introduction

Information queries are an important process in data management, even more nowa-
days with the increasing availability of information in various forms, such as video
sequences, images or DNA sequences. Exact search has been the traditional ap-
proach for information retrieval; the problem here is that a total order relation is
needed among the indexed data. Considering that similarity is the instinctive crite-
rion by which people make comparisons, the information retrieval communities use
similarity in order to organize and search for data.

Similarity searches have been widely used in many areas of computer science,
such as data mining, bioinformatics and video compression. Metric Access Methods
(MAM) have proven excellent to solve similarity searches since they are designed
to work over metric spaces reducing the cost of search. Since the distance function
can have a high computational cost, it is assumed that the performance of MAM
depends mainly on the Number of Distance Calculations (NDC) performed during
construction and search processes. Working with large datasets (i.e. multimedia
data) the access to secondary memory must also be considered.

Within computational geometry, graph-based methods build proximity
graphs, also called neighborhood graphs, on a set of points, creating edges among
these points based on a neighborhood criterion. This approach produced excellent
results on clustering tasks and on applications of computational vision and pattern
recognition, visual perception, biology, geography and cartography. Neighborhood
can be defined in terms of geometric attributes such as coordinates, distance, density



or forms. In proximity graphs, Relative Neighborhood Graph (RNG) is a prominent
representative [Jaromczyk and Toussaint 1992].

The paper is organized as follows: Section 2 presents a review of previous
work. Section 3 describes the proposed technique. Section 4 shows the experimental
results. Finally, Section 5 presents the conclusions of the paper.

2. Previous work

A common characteristic in applications of similarity information retrieval is the
existence of a universe of objects U and a function d : U × U → R that measures
the distance between two objects of U. Working in metric spaces, we define S ⊆ U
as a finite set of data that can be preprocessed, where the function d() measures the
dissimilarity among objects and satisfies the following conditions, ∀x, y, z ∈ U:

1. d(x, y) ≥ 0 positivity
2. d(x, y) = d(y, x) symmetry
3. d(x, y) = 0 ↔ x = y reflexibility
4. d(x, y) ≤ d(x, z) + d(y, z) triangle inequality

Triangle inequality is the most important property because it gives bounds
on a distance we may not have computed, leading to similarity search algorithms
significantly faster i.e. if we have the distances d(x, z) and d(y, z), the bounds
for the unknown distance d(x, y) are |d(x, z) − d(y, z)| ≤ d(x, y) ≤ d(x, z) + d(y, z)
[Clarkson 2006]. That is to say, it is possible to discard regions which do not overlap
the query region, as it can be seen in Figure 1.

Figure 1. Unified model for searching in metric spaces [Chávez et al. 2001].

Given a query object q ∈ U, in order to recover similar objects to q, the
following basic types of queries are defined:

• Range queryRq(q, r): Which finds all elements that are within the query
radius r. Rq(q, r) = {u ∈ U|d(u, q) ≤ r}.

• k-Nearest neighbor query kNN(q, k): Which finds the k nearest neigh-
bors of q. Finds a set A ⊆ U so that |A| = k and ∀u ∈ A, v ∈ U−A, d(q, u) ≤
d(q, v).



• Nearest neighbor query NN(q): Which finds the nearest neighbor of q.
NN(q) = kNN(q, 1).

Metric Access Methods (MAM) organize a dataset using a similarity crite-
rion. MAMs are structures that work over metric spaces, organizing data for an
efficient answer to similarity queries. Good surveys on MAMs can be found in
[Chávez et al. 2001], [Hjaltason and Samet 2003], and [Clarkson 2006]. According
to [Zezula et al. 2006], MAMs can be classified as:

• Ball-partitioning methods: Fixed Queries Tree, Vantage Point Tree.
• Hyper-plane partitioning methods: Generalized Hyper-plane Tree.
• Precomputed distances: Approximating Eliminating Search Algorithm

(AESA).
• Hybrid methods: Multi Vantage Point Tree, GNAT, Spacial Approximation

Tree (SA-Tree).
• Others: M-Tree, D-Index.

In [Chávez et al. 2001] M-Tree [Ciaccia et al. 1997] is classified as a method
based on covering radius. Thus, Slim-Tree [Caetano Traina et al. 2000] and DBM-
Tree [Marcos R. Viera and Traina 2004a] could be also considered under this classi-
fication since they work in a similar way.

The M-Tree [Ciaccia et al. 1997] based techniques, grow bottom-up from
leaves to rootfrom leaves to the root organizing the objects in a hierarchical struc-
ture using a representative as the center of each region which covers the objects in
a sub-tree.

The Slim-Tree [Caetano Traina et al. 2000] introduces new split and inser-
tion algorithms as well as the Slim-down algorithm and an overlapping measure
called Fat-factor to build faster trees. The split algorithm is based on the Mini-
mum Spanning Tree (MST). The Slim-down algorithm is presented to reduce the
degree of overlap, making the metric tree tighter thus improving query and building
performance.

The DBM-Tree [Marcos R. Viera and Traina 2004a] operates in a similar way
to Slim-Tree. This MAM proposes to relax the height of the tree in regions with high
density of data in order to minimize the overlap of nodes. This approach reduces
the number of distance computations without affecting the number of disk accesses.

The effort of reducing the overlap makes these techniques to work well in
low and medium dimensionality, but working with high dimensional data, the over-
lapping among regions could be so high that the idea of data representation with a
hyper-spherical regions hierarchy deteriorates the results compared with a sequential
search [Böhm et al. 2001].

On the other hand, in the field of computational geometry, a graph is defined
by G(V, E) where V is a set of points in Rn and E : V × V a set of edges. In
proximity graphs a property P (neighborhood criterion) is defined, and each pair
of points (p, q) ∈ V × V is connected by an edge e ∈ E with weight d(p, q) if and
only if they fulfill P ; then p is neighbor of q and vice versa. Furthermore, proximity
graphs connect spatially near points, reflecting the proximity between them.



In order to define the some proximity graphs we must consider: d : V×V → R
a distance function defined in some metric, and B(x, r) a sphere with center in
x ∈ V and radio r, i.e. B(x, r) = y : d(x, y) < r. Considering these definitions,
some proximity graphs include:

• Delaunay Triangulation (DT): For each triangulation T in V , the circumcircle
C(T ) does not contain points of V .

• Gabriel Graph (GG): (x, y) ∈ E : B(x+y
2

, d(x,y)
2

) ∩ V = ∅.
• RNG: (x, y) ∈ E : (B(x, d(x, y)) ∩B(y, d(x, y))) ∩ V = ∅. Figure 2 shows the

intersection of the two spheres. That is, two points x, y ∈ V are neighbors if
d(x, y) ≤ max{d(x, z), d(y, z)}∀z ∈ V ∧ z 6= x, y.

• MST: In a weighted graph, MST is the minimum-weight tree which contains
all of the graph’s vertices.

Figure 2. The inner circle shows the exclusion area applied in GG. The gray area
shows the exclusion area applied in RNG. In order to connect x and y, there are no
other points of V inside the exclusion area.

In [Toussaint 1980] the hierarchy relation MST ⊆ RNG ⊆ DT was demon-
strated. In [Toussaint 1980] two construction algorithms for RNG with costs O(n3)
and O(n2) were also presented. [Supowit 1983] showed construction algorithms with
cost O(nlogn). Most of these algorithms work over Euclidean spaces because they
are based on the Delaunay Triangulation (DT). Since RNG is defined purely in
terms of the metric distance, a construction algorithm not based on DT could be
developed using a divide-and-conquer approach, therefore applicable to any metric
space.

3. Neighborhood Approximation Graph (NA-Graph)

According to the Spatial Approximation Approach [Navarro 2002] starting from a ∈
S, a random element of the graph associated with its set of neighbors N(a), we
can spatially approximate towards a query point q ∈ U. This is done selecting the
element b ∈ N(a) that is closer to q, until reaching the element of S that is the
closest to the query.

As it was stated in [Navarro 2002], in order to satisfy the spatial approxima-
tion criterion, a graph must fulfill the following condition:

∀a ∈ S, ∀q ∈ U, if ∀b ∈ N(a), d(q, a) ≤ d(q, b), then ∀b ∈ S, d(q, a) ≤ d(q, b)



Although the graph generated by DT fulfills this condition [Navarro 2002],
the problem is that it is only true for Euclidean spaces. In general, for metric spaces
a completely connected graph is necessary. SA-Tree [Navarro 2002] simplifies the
idea of spatial approach in order to find an optimal solution. Here an object a
is selected as the root node and connected to objects s ∈ S such that they are
closer to a than to any neighbor (an example is showed in Figure 3(a)). Each
object connected to a is a root of an appropriate subtree. A static approach was
originally designed for SA-Tree, and dynamic version of SA-Tree was later proposed
in [Navarro and Reyes 2002]. A drawback of SA-Tree is that the selection of the root
is critical for the performance of the search algorithm; furthermore a bad root could
lead to the exploration of most part of the nodes of the tree as it can be observed
in Figure 3(a).

(a) (b)

Figure 3. Example of range query with the SAT (a) and NA-Graph (b). In (a) the
root, and in (b) the seeds have a greater node size. The dataset explored is shaded
black, and the gray sphere represents the query region.

Since RNG is a subgraph of DT in which it is guaranteed that for any pair
of points a, q ∈ S, exists one or more paths where starting at a we can arrive at
q, it is possible to spatially approximate towards a query point following the path
of minimum length within RNG as it is observed in Figure 4. This investigation
demonstrates that RNG can also be useful as a data structure that answers similarity
queries using a spatial approximation criterion .

For Nearest Neighbor (NN) queries in RNG, we start from a node a of the
graph, and in order to spatially approximate to a query point q ∈ U, we move to
the node b ∈ N(a) which is closest to q until we have arrived at a node already
explored (entered into a loop). If the node a is closer to q than b, then a is marked
as a candidate to be NN of q; after finishing the exploration, the closer candidate is
chosen as the nearest neighbor of q. The process is detailed in Algorithm 1 and in
Figure 5.



Figure 4. Starting at point a we move towards q. The corresponding Voronoi
partition is demarcated in dashed lines.

Algorithm 1 NearestNeighbor(Query q)

1: Select a point a ∈ S;
2: while a has not been explored do
3: Select the node b ∈ N(a) which is the closest one to q;
4: if ∀b ∈ N(a), d(a, q) < d(b, q) then
5: Mark a as candidate;
6: end if
7: a ← b;
8: end while
9: Choose the candidate which is the closest one to q.

end

Figure 5. An example of NN search in NA-Graph. In the graph the seeds have a
greater node size. In this case a random seed was chosen as the starting search
point. The path explored is shaded black as well as the candidate nodes.

The construction process of this structure is the same as the RNG, as it was
seen on the previous section: time of construction depends on the algorithm we use.

Once the capacity of a spatial approximation in RNG is demonstrated, this
idea can be generalized to solve similarity queries as stated in [Navarro 2002].



To solve range queries in RNG: given a query point q with radius r, starting
from a node a, explore recursively the elements b ∈ N(a) whose distance to q is
smaller or equal than d(x, q)+ 2r, where x is the closest node to q already explored.
This process is repeated until entering into a loop. Finally all the explored nodes
within the search radius are reported. The process is detailed in Algorithm 2 and
in Figure 3 (b). Note that It is first invoked as RangeQuery(a, q, r, d(a, q)), where
a is the seed of the graph.

Algorithm 2 RangeQuery (Point a, Query q, Range r, Distance mindist)

1: if a has not been explored then
2: if d(a, q) ≤ r then
3: Insert a to query Result
4: end if
5: mindist ← min{{mindist} ∪ {d(c, q) : c ∈ N(a)}}
6: for b ∈ N(a) do
7: if d(b, q) ≤ mindist + 2r then
8: RangeQuery(b, q, r, mindist);
9: end if

10: end for
11: end if

end

Given a query point q, in order to perform a similarity query in RNG, a seed
or starting point a ∈ S could be randomly selected. If a is located far from q, it is
likely that most of the graph would be explored; therefore, it is of interest that the
seed would be located as close to q as possible.

We propose the creation of the set of seeds Seeds(S) ⊂ S that groups a
few representative nodes of RNG, selected based on a density criterion. Then the
node s ∈ Seeds(S) that is closer to the query is chosen as the seed. The density
criterion Relative Neighborhood Density Factor (RNDF) is a value based on the
neighborhood of each node of RNG. RNDF is defined in Equation 1.

RNDF (x) =
|{y ∈ N(x) : x ← NN(y)}|

|N(x)| , ∀x ∈ S (1)

According to Equation 1, RNFD(x) has value 1 only if all the neighbors of
x have x as their nearest neighbor; in any other case this factor has a value smaller
than 1. Therefore, we are interested in select as possible seeds those points with
the highest density factor. In order to reduce the number of candidates to seed,
we discard candidates with one neighbor and candidates that have a neighbor that
already was selected as candidate. Equation 2 defines the set Seeds(S).

Seeds(S) = {x ∈ S : RNDF (x) ≥ 1 ∧ |N(x)| > 1 ∧N(x) ∩ Seeds(S) = ∅} (2)

Note that it is possible to index the set Seeds(S) with a Metric Access Meth-
ods (MAM) in order to accelerate the process of searching the nearest seed to q.



4. Experiments

Based on this idea, three groups of experiments are presented using the
SA-Tree [Navarro 2002], Slim-Tree [Caetano Traina et al. 2000] and DBM-Tree
[Marcos R. Viera and Traina 2004b] and our proposal Neighborhood Approximation
Graph (NA-Graph). In the first group of experiments the range query process of
our approach is compared the mentioned MAMs, each technique measured in terms
of Number of Distance Calculations (NDC). The second group of experiments com-
pares the proposed index to the same MAMs in terms of the NDC performed in
k-NN queries. Finally we compare visually the resulting graph of NA-Graph and
the resulting tree of SA-Tree when performing range queries. All experiments were
implemented using Microsoft Visual C++ 6.0 on a PC 2.0 GHz, 1024 MB of RAM,
running Microsoft Windows XP.

Three datasets were used for our experiments:

• CITIES: This dataset contains a set of 5,507 geographical coordinates of the
Brazilian cities. The file was obtained from http://www.ibge.gov.br.

• SYNT2D: This dataset contains 1000 2-d synthetic points between
(0, 0)...(5, 5). We choose this dataset in order to have a visualization of the
search process.

• SYNT16D: This dataset contains 10,000 16-d synthetic points between
(0, 0)...(5, 5).

From each dataset, were extracted randomly 500 objects to be used as query
centers. In the query measurements, each point corresponds to performing 500
queries with the same parameters but varying query centers.

Figures 6(a), 6(c) and 6(e) illustrate the first group of experiments. Here we
make a comparison in terms of the accumulated Number of Distance Calculations
(NDC) when performing range queries.

As it can be observed in the first group of experiments, NA-Graph reduces
by up to 40% the NDC in comparison to SA-Tree. This difference is due to the use
of seeds that are closer to the query point.

Results for the second group of experiments are presented in Figures 6(b),
6(d) and 6(f). These experiments compare the average Number of Distance Calcu-
lations (NDC) when performing kNN queries.

DBM-tree and Slim-Tree are MAMs based on covering radius. To discard a
region (a node) we only verify the overlap between the query region and the node.
For this reason these methods work well in low and medium dimensionality, but
when working with high dimensional data, the overlapping among region could be
high, so deteriorates the result.

On the other hand, SA-Tree and NAG are methods based on spatial approx-
imation criterion, that is dividing the search space, starting at some point in the
space and get closer and closer to the query. To discard a element is necessary to
verify that the point is outside the region (min{d(x, q)}+ 2 ∗ r). So NA-Graph give
better performance that SAT due to the use of seeds that are closer to the query
point, that is find the value min{d(x, q)} faster, also we show that NA-Graph is



competitive against methods based on covering radius. The SA-tree gives less Num-
ber of Distance Calculations (NDC) than the other existing structures on metric
spaces of high dimension or queries with low selectivity but in low dimensions or for
queries with high selectivity (small r or k), its search performance is poor.

Finally, Figures 7 and 8 show SA-Tree and NA-Graph respectively using the
SYNT2D dataset in the worst range query case. Figures demonstrate that the area
explored in NA-Graph is less than SA-Tree.
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Figure 6. Comparison of the average number of distance calculations in the range
queries (first column), and the average number of distance calculations in the k-
Nearest Neighbor queries (second column) of DBM-Tree, Slim-Tree, SA-Tree and
NA-Graph for the BrazilianCities ((a) - rq and (b) - kNNq), Synt2D ((c) - rq and
(d) - kNNq) and Synt16D ((e) - rq and (f) - kNNq) datasets.



Figure 7. Visualization of worst range query case in SA-Tree using the SYNT2D
dataset.

Figure 8. Visualization of worst range query case in NA-Graph using the SYNT2D
dataset.



5. Conclusions

The experiments showed that NA-Graph can be used as MAM based on the spatial
approximation approach. Performance of NA-Graph was up to 40% better than SA-
Tree. In general NA-Graph is competitive with MAMs based on covering radius.

Through Relative Neighborhood Density Factor (RNDF) we select a subset
of representative nodes in order to reduce the graph exploration, thus speeding up
similarity queries.

This is the first approach that introduces Relative Neighborhood Graph
(RNG) to solve similarity queries. Furthermore, NA-Graph have a large poten-
tial for improvements we are pursuing. First develop a construction algorithm using
RNG as data structure based on clustering to improve even more the result. Second
new search algorithms using neighborhood information.
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